Markov Chain Monte Carlo Computation of Confidence Intervals for Substitution-Rate Variation in Proteins

نویسندگان

  • Andrey Rzhetsky
  • Pavel Morozov
چکیده

We suggest a method implemented in a computer program, immodestly dubbed TSUNAMI, that allows us to compare two homologous protein subfamilies with respect to the distribution of substitution rates along sequences. This study furthers our earlier work on a wavelet model of rate variation (1). The current approach allows sensitive detection of subtle discordances in the selection patterns between two protein subfamilies. In addition to performing fast computation of the maximum posterior probability estimates of the relative substitution rates, the method can select the most appropriate number of wavelet parameters for a particular dataset. TSUNAMI is based on a Markov chain Monte Carlo technique, and appears to be more applicable to larger datasets than is the full likelihood-based approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Markov Chain Monte Carlo Confidence Intervals

In Adaptive Markov Chain Monte Carlo (AMCMC) simulation, classical estimators of asymptotic variances are inconsistent in general. In this work we establish that despite this inconsistency, confidence interval procedures based on these estimators remain consistent. We study two classes of confidence intervals, one based on the standard Gaussian limit theory, and the class of so-called fixed-b c...

متن کامل

Markov Chain Monte Carlo Confidence Intervals

For a reversible and ergodic Markov chain {Xn, n ≥ 0} with invariant distribution π, we show that a valid confidence interval for π(h) can be constructed whenever the asymptotic variance σ P (h) is finite and positive. We do not impose any additional condition on the convergence rate of the Markov chain. The confidence interval is derived using the so-called fixed-b lag-window estimator of σ P ...

متن کامل

Spatial count models on the number of unhealthy days in Tehran

Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...

متن کامل

A Markov Chain Monte Carlo Approach to Stereovision

We propose Markov chain Monte Carlo sampling methods to address uncertainty estimation in disparity computation. We consider this problem at a postprocessing stage, i.e. once the disparity map has been computed, and suppose that the only information available is the stereoscopic pair. The method, which consists of sampling from the posterior distribution given the stereoscopic pair, allows the ...

متن کامل

FUNCTION-SPECIFIC MIXING TIMES AND CONCENTRATION AWAY FROM EQUILIBRIUM By

Slow mixing is the central hurdle when working with Markov chains, especially those used for Monte Carlo approximations (MCMC). In many applications, it is only of interest to estimate the stationary expectations of a small set of functions, and so the usual definition of mixing based on total variation convergence may be too conservative. Accordingly, we introduce function-specific analogs of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing

دوره   شماره 

صفحات  -

تاریخ انتشار 2001